Derivative: Difference between revisions

From Objective Mathematics
Jump to navigation Jump to search
mNo edit summary
Line 4: Line 4:


== Criticism ==
== Criticism ==
This definition makes things way more complicated. I will demonstrate this with the following example. Let's suppose that <math>f(x) = x^3</math> so <math>(\Delta_\epsilon f)(x) = 3x^2 + 3\epsilon x + \epsilon^2 </math> and <math>(\Delta_\epsilon f - \Delta_{\epsilon'} f)(x) = 3 (\epsilon - \epsilon' )x + ( \epsilon^2 - \epsilon'^2)</math>. And let's say that we are in a context where anything with absolute value below 0.1 is nill. Let <math>\epsilon  = 0.091 </math> and <math>\epsilon' = 0.001</math>. Then <math>(\Delta_\epsilon f - \Delta_{\epsilon'} f)(x) = 0.27 x + 0.00828 </math>. This quantity is greater than 0.1, and thus non-nill, when <math>x > 0.339\overline{703}</math>, so we reach the seemingly absurd conclusion that <math>f(x) = x^3</math> is not differentiable where <math>x > 0.339\overline{703}</math>. 
This definition makes things way more complicated. I will demonstrate this with the following example.  


This complication is not present in the standard definition of derivative, where the remainder terms go away in the limit and we are just left with <math>f'(x) = 3 x^2 </math>. It's not completely clear whether or not this complication is a problem. Those pesky terms are measuring something real, which calculus is ignoring. They are measuring the difference between two different methods of finding the slope of the tangent line to a real curve.
Let's suppose that <math>f(x) = x^3</math> so <math>(\Delta_\epsilon f)(x) = 3x^2 + 3\epsilon x + \epsilon^2 </math> and <math>(\Delta_\epsilon f - \Delta_{\epsilon'} f)(x) = 3 (\epsilon - \epsilon' )x + ( \epsilon^2 - \epsilon'^2)</math>. And let's say that we are in a context where anything with absolute value below 0.1 is nill. Let <math>\epsilon  = 0.091 </math> and <math>\epsilon' = 0.001</math>. Then <math>(\Delta_\epsilon f - \Delta_{\epsilon'} f)(x) = 0.27 x + 0.00828 </math>. This quantity is greater than 0.1, and thus non-nill, when <math>x > 0.339\overline{703}</math>, so we reach the seemingly absurd conclusion that <math>f(x) = x^3</math> is not differentiable where <math>x > 0.339\overline{703}</math>. 
 
More generally, if <math>\nu : \mathbb{Q}_{>0}</math> is the nill cutoff (where we also assume <math>\nu \leq 1</math>), then <math>f(x) = x^3</math> is only "differentiable" in the region <math display="block">-\frac{1}{3}(1 + \nu) < x < \frac{1}{3}(1 - \nu)</math>This seems like an absurd conclusion.

Revision as of 22:58, 28 January 2024

Let be a function, and let . I define by

I say that is differentiable at , if is nill whenever are both nill.

If is differentiable at , then I define the derivative of at as , for some nill .

Criticism

This definition makes things way more complicated. I will demonstrate this with the following example.

Let's suppose that so and . And let's say that we are in a context where anything with absolute value below 0.1 is nill. Let and . Then . This quantity is greater than 0.1, and thus non-nill, when , so we reach the seemingly absurd conclusion that is not differentiable where .

More generally, if is the nill cutoff (where we also assume ), then is only "differentiable" in the region

This seems like an absurd conclusion.